Opinia
o pracy doktorskiej mgr inż. Agnieszki Pełka-Sawenko
pt. „Zastosowanie metod dostrajania modeli dyskretnych oraz transformaty falkowej do diagnostyki uszkodzeń belek zespółnych”

wykonanej pod kierunkiem
dr. hab. inż. Macieja Szumiaga, prof. PP – promotora,
oraz dr. inż.. Tomasza Wróblewskiego – promotora pomocniczego

Podstawa opracowania

Ogólna charakterystyka dysertacji
Recenzowana rozprawa dotyczy niezwykle ważnej tematyki diagnostyki uszkodzeń belek zespółnych. Praca zawiera rozważania teoretyczne dotyczące metod dostrajania modeli obliczeniowych oraz wykorzystania transformacji falkowej do diagnostyki uszkodzeń. Modele teoretyczne odniesiono do badań doświadczalnych przeprowadzonych w ramach innych prac na Wydziale Budownictwa i Architektury ZUT.
Rozprawa składa się z 7 rozdziałów, załącznika w postaci tablic ze szczegółowymi wynikami obliczeń oraz bibliografii obejmującej 188 publikacji, uzupełnionych o streszczenie w języku polskim, streszczenie w języku angielskim, spis treści, spis 97 rysunków, spis 76 tablic, wykaz skrótów i oznaczeń. Rozprawa napisana jest w języku polskim.
Wykaz skrótów i oznaczeń nie obejmuje wszystkich używanych w rozprawie.

Treść rozprawy
Rozdział 1 – Wprowadzenie
We wstępie opisano konstrukcje zespolone stalowo-betonowe. Sześciostrońnicowy przegląd stanu wiedzy dotyczy: metod monitorowania stanu konstrukcji (SHM), analizy falkowej, technik dostrajania modeli obliczeniowych, metody elementów skończonych oraz
zagadnienia bezpieczeństwa konstrukcji zespołowych. Rozdział uzupełnia opis badań doświadczalnych prowadzonych od roku 2005 na Wydziale Budownictwa i Architektury w ramach projektów badawczych oraz wcześniejszych rozpraw doktorskich wykonanych w ramach tych badań. Autorka recenzowanej rozprawy uczestniczyła w części tych badań. Na koniec rozdziału postawiono cel rozprawy, którym jest opracowanie algorytmu do diagnostyki uszkodzeń belek zespołowych przy wykorzystaniu metod dostrajania modelu obliczeniowego i transformacji falkowej, sformułowano trzy tezy do dowodzenia, oraz określono zakres pracy.

Rozdział 2 – Podstawy teoretyczne analiz
W rozdziale omówiono transformację falkową oraz przedstawiono zarys metod dostrajania modeli obliczeniowych.

Rozdział 3 – Badania doświadczalne
W rozdziale opisano badane belki oraz przeprowadzone badania doświadczalne w zakresie statycznym i dynamicznym.

Rozdział 4 – Modele obliczeniowe MES

Rozdział 5 – Proces dostrajania modeli dyskretnych
W rozdziale scharakteryzowano proces dostrajania modeli obliczeniowych oraz przedstawiono autorski wielopoziomowy algorytm o nazwie „Id-Is-It”. Poziom pierwszy algorytmu to identyfikacja parametrów statycznych i dynamicznych belki zespołowej. Na poziomie drugim algorytmu identyfikowane są parametry tłumienia modelu. Dla obu poziomów algorytmu przedstawiono wyniki obliczeń. W dalszej części Rozdziału 5 przedstawiono siedem analiz parametrycznych, które miały na celu uzasadnienie poprawności doboru zmiennych decyzyjnych podczas identyfikacji parametrów.

Rozdział 6 – Diagnostyka uszkodzeń belek zespołowych
W rozdziale przedstawiono algorytm diagnostyki uszkodzeń belek zespołowych, oraz przeprowadzono przykładowe obliczenia. W belce swobodnej analizowano trzy rodzaje uszkodzeń, a w belce wolno podpartej jeden rodzaj uszkodzenia. Zweryfikowano tym samym poprawność opracowanego programu do diagnostyki uszkodzeń.

Rozdział 7 – Uwagi końcowe i kierunki dalszych prac
W rozdziale podsumowano wyniki prac i sformułowano wnioski. Przedstawiono także ogólne możliwe kierunki dalszych prac.

Załęczniki
Załęczniki stanowią cenny komplet 26 tablic z autorskimi wynikami obliczeń.
Bibliografia
Bibliografia obejmuje spis 188 prac, wśród których odnaleźć można normy projektowe, podręczniki użytkowania programów, raporty z badań, rozprawy doktorskie, referaty konferencyjne, książki i publikacje w czasopismach naukowych.

Ocena rozprawy i uwagi krytyczne
Ocena trafności wyboru tematyki
Wybór tematyki rozprawy został dokonany trafnie – rozprawa dotyczy ważnego z punktu widzenia praktycznego problemu diagnostyki uszkodzeń bełek zespołowych. Temat rozprawy i narzędzia zastosowane do zrealizowania jej celów są poprawne, opracowane na poziomie wiedzy współczesnej.

Zawartość i układ rozprawy
Praca jest kompletna z jej układ jest logiczny i prawidłowy.

Uwagi krytyczne i dyskusyjne; pytania; uwagi szczegółowe
Rozdział 1 stanowi logiczny i uporządkowany przegląd kilku zagadnień istotnych z punktu widzenia dalszych rozważań. Tytuł rozdziału 1.2 „Przegląd stanu zagadnienia” należałoby zmienić na np. „Przegląd wybranych zagadnień”. W kilku miejscach Rozdziału 1, ale także w innych rozdziałach, razi „seryjne” cytowanie literatury, często tych samych autorów. Prace te powstawały zazwyczaj na przestrzeni lat, dotyczą różnych zagadnień i powinny być omawiane bardziej szczegółowo. Przykłady takich serii to prace [52-57], [93-97], [100-105] i kilka innych.

Str. 17. Słowo „zbieżność” jest mylnie używane w znaczeniu słowa „zgodność”, włącznie z niepoprawną definicją, która mówi, że „Zbieżność to określenie stopnia podobieństwa ...”. Skoro już Autorka przywołała na stronie 17 słowo „homomorfizm” to recenzent prosi o wyjaśnienie jak rozumie ona to matematyczne określenie w odniesieniu do walidacji modelu. Str. 17. Nie objaśniono skrótu „WT” – zapewne Wavelet Transform.

Str. 18. Nieprawidłowe jest zdanie „Zmiany w naturalnych częstotliwościach drgań własnych można uznać na najbardziej powszechnej metodę detekcji uszkodzeń.” Nie zmiany stanowią metodę, lecz sposoby ich badania.

Str. 20. Opis metody elementów skończonych jest chaotyczny i nieprecyzyjny. Z treści można mylnie wnioskować, że model ciągły dotyczy teorii bełek, a model dyskretny dotyczy innych teori.

Str. 21. Autorka pisze „Pozycjowne wyniki, opublikowane w [8], [100]-[105] oraz [168] dały podstawy do dalszych analiz ...”. Ponieważ cytowane są prace Autorki, recenzent prosi o wyjaśnienie co to za „pozytywne wyniki”.

Recenzent bardzo pozytywnie ocenia rozdział 1.2.1 w którym omówiono badania prowadzone wcześniej w Katedrze Teorii Konstrukcji, badania w których uczestniczyła także Autorka. Opis badań jest rzetelny, a udział Autorki precyzyjnie wskazany. W rozdziale tym zdefiniowano także przedmiot niniejszej rozprawy doktorskiej, jako rozszerzenie badań o zagadnienia nie podejmowane we wcześniejszych pracach.
Zwieńczeniem Rozdziału 1 jest postawienie celu pracy, jej tez i zakresu, które wynikają z przeprowadzonego przeglądu wybranych zagadnień. Początek tezy pierwszej jest zbędnym – nie trzeba udawadniać, że transformacja falkowa i metody dostrajania modeli należą do nieniszczących metod diagnostyki.

W Rozdziale 2 przedstawiono teoretyczne podstawy dalszych analiz. Recenzent jest zdania, że z większą uwagą powinny być dobierane określenia „transformacja falkowa” i „transformata falkowa”. Czytając rozdział 2.1, a także dalsze rozdziały, można odnieść wrażenie, że określenia te są stosowane wymiernie. Recenzent prosi o wyjaśnienie jak Autorka rozumie różnice między transformacją a transformatą, w odniesieniu do omawianego rozdziału ?.

Str. 28 – wiersz 1 – w zdaniu „Jak potwierdzają dalsze analizy oraz literatura ...” chodzi zapewne o „głębse analizy dostępne w literaturze”, a nie „dalsze analizy”, gdyż dotąd żadnych nie było.

Zdaniem recenzenta lepiej byłoby skoncentrować się na szczegółowym opisie falek stosowanych w pracy, niż na przedstawianiu różnych falek i przykładowych analiz.

Istotny z punktu widzenia wartości poznawczych rozprawy jest Rozdział 2.2. Jest on jednak napisany na nierównym poziomie, zawiera nieprecyzyjne określenia i błędy.

Początek rozdziału zawiera niezrozumiałe stwierdzenia:

Str. 32 – pojęcie „zbieżność” jest używane z rozumieniem „zgodność”;

Str. 32 – błędne jest zdanie w którym czytamy, że metoda bezpośrednia „oparta jest na integracji w macierze mas i sztywności” – co to znaczy ?;

Str. 32 – błędne jest zdanie „Minimalizowana jest różnica kryterium względem wybranych parametrów”. Podobnie dalej czytamy, że „minimalizacja jednego może powodować wzrost drugiego kryterium” – to bardzo nieprecyzyjne, o ile nie błędne określenia.

Nieprecyzyjny, a miejscami błędny jest początek Rozdziału 2.2.2 (str. 34-35), który nie ma jednak wpływu na obliczenia prowadzone w dalszych częściach pracy. Niekonsekwentnie oznaczone są wektory i macierze – w jednym miejscu czcionką pogrubioną, a w innym zwykłą. Co oznaczają „M” i „N” we wzorach (2.13), (2.14), i dalszych, bo na pewno nie stopnie swobodny układ, jak napisano na stronie 34?. Czy wzory dotyczą modelu MES ? – jeśli tak, to trzeba to napisać. Równanie (2.15) nie jest rozwiązaniem zagadnienia własnego równania (2.13) z uwzględnieniem tłumienia. Co oznaczają „i” i „j” we wzorach (2.15), (2.16), (2.21) ? Wzory (2.15)-(2.18) są prawdziwe dla parametrów skalarnych, podczas gdy występują w nich macierze. Recenzent prosi o wyjaśnienie powyższych wątpliwości.

Jakiego typu zagadnienia dotyczy rozdział 2.2.3 – są to zapewne równania teorii sprężystości w ujęciu MES ?. W równaniu (2.30) P jest wektorem i powinien być oznaczony czcionką pogrubioną. W mechanice unikalnym określenia „niedużych przemieszczeń”. W wyrażeniu zasady prac wirtualnych (2.33) błędnie zapisano różniczkę, zaś przemieszczenia i odkształcenia są wirtualne a nie rzeczywiste. Co oznaczono dużymi greckimi literami omega i gamma ? Jak interpretować średkowy człon równania (2.33) ?
W Rozdziale 3 opisano badania doświadczalne które stanowią podstawę do kalibracji modeli obliczeniowych, przedstawionej w dalszej części pracy. Opis jest wyczerpujący. We wzorach (3.1) i (3.2) niepotrzebnie oznaczono siły czcionką pogrubioną.

Str. 41 – Zamiast „… opisane będą takie analizy, które są niezbędne do przeprowadzenia założeń pracy,”, powinno być raczej „niezbędne do weryfikacji założeń pracy.”

W całym rozdziale należy uporządkować zapis nazw badań (B1, B2, B3) czcionką pogrubioną, lub nie, kursywą, lub nie.

Str. 44 – Zamiast „W trakcie badań belki przykładało wymuszane w kilku miejscach…”, powinno być „przykładano wymuszenie”.

Str. 44 i 46 – Oznaczenia w Tablicach 3.5 i 3.6 są opisane dopiero w Rozdziale 4.


W punktach 4.2 i 4.3 opisano opracowane przez Autorkę sekwencje programów Phyton, Abaqus i Matlab. Jest to bardzo cenny i oryginalny wkład Autorki do rozprawy i być może należało go opisać nieco bardziej szczegółowo.

W podpunkcie 4.4 opisano szereg modeli MES i przedstawiono wyniki obliczeń kolejno kształtownika stalowego, płytę żelbetową oraz belki zespołowej (w dwóch wariantach). Omówiono szczegółowo wyniki obliczeń dynamicznych otrzymane na podstawie usrednionych parametrów materiałowych stali i betonu – wykazano tym samym potrzebę, a nawet konieczność identyfikacji parametrów modeli obliczeniowych, co zrobiono w kolejnym rozdziale.

Str. 51 – nazwisko francuskiego mechanika Simeona Denis Poissona, słynnego m.in. ze współczynnika Poissona, pisze się przez dwa „s”.

Str. 52 – opis zjawiska „lackingu”, sensu całkowania zredukowanego oraz koncepcji „incompatible mode” jest nieprecyzyjny.

Str. 55 – elementy skończone S4R i S8R w programie Abaqus są opracowane w ramach teorii powłok o średniej grubości, a nie, jak pisze Autorka, według teorii powłok cienkich. Warto zaznaczyć, że w rozprawie stosuje się płaskie elementy skończone, choć z biblioteki „shell elements”. Modele nie są więc powłokowe, lecz tarczownicowe.

Używanie przez Autorkę określenia „dopasowanie wyników” jest niezręczne.
Str. 60 – nazwisko ukraińskiego mechanika Stephana Timoshenko powinno się pisać przez „sh”, a nie przez spolszczone „sz”.

Str. 60 – Skoro Autorka pisze o teoriach belek Eulera-Bernoulliego i Timoshenki, to zdanie „Elementy te oparte są na teorii Eulera-Bernoulliego z dodatkowo uwzględnieniem efektu ścinań poprzecznego” można skrócić, pisząc, że to teoria Timoshenki.

Str. 60 – nie można napisać, że „elementy są bardziej efektywne, zwłaszcza przy uwzględnieniu ścinań” – chodzi przecież o efektywność tych elementów w zadaniach w których efekt poprzecznego ścinań nie jest pomijalnie mały.

W całym rozdziale brakuje precyzyjnego zdefiniowania zbieżności wyników – Autorka używa niejasnych określeń „wzrost zmiennych”, „zakres siatki”, a czytelnik musi się domyślać o co chodzi.

Bardzo cenne są opisy modelowania zespołów sztywnych i podatnych belek zespołowych przy użyciu zaawansowanych procedur programu Abaqus. Skuteczna i twórcza implementacja technik TIE i SPRING świadczą o dobrej znajomości programu przez Doktorantkę. Warto też podkreślić, że Autorka rozprawy zwraca baczność a uwagę na czas obliczeń, a tym samym ich koszt.

Str. 74 – nie dokończono zdania „Dla analiz dynamicznych potwierdzone zostało pracami.”. W podsumowaniu Rozdziału 4, na stronie 77, niepotrzebnie opisano treść rozdziału zamiast skupić uwagę na wnioskach, które trzeba odnajdywać w treści wcześniejszych podpunktów.

Rozdział 5 jest kluczowy z punktu widzenia wartości rozprawy i jej oryginalności. Opisano w nim i zastosowano z powodzeniem wielopoziomowy algorytm identyfikacji i waliacji parametrów. Przedstawiono i omówiono wyniki obliczeń, potwierdzając poprawność przyjętych zmiennych decyzyjnych oraz poprawność algorytmu. Bardzo cennym i przemyślanym jest rozdział 5.4 dotyczący siedmiu analiz parametrycznych modeli obliczeniowych, które mają na celu zróżnicowanie parametrów z punktu widzenia wrażliwości rozwiązania na ich dobór.

Str. 81 – niezrozumiałe jest zdanie „Parametry były tak dobrane by spełnić ograniczenie na niekorzyść innych parametrów.”.

Str. 99 – zdanie „Pozytywne wyniki weryfikacji przedstawiono na wykresach.” jest niepoprawne.

W Rozdziale 6 opisano oryginalny algorytm dotyczący diagnostyki uszkodzeń belek zespołowych. Opracowany algorytm i program bazuje na osiągnięciach poprzedniego rozdziału rozprawy. Rozważania mają charakter teoretyczny. Przeanalizowano cztery przykłady modeli obliczeniowych w których symulowano defekty. Wykazano przydatność i skuteczność dyskretnej transformacji falkowej w zastosowaniu do diagnostyki uszkodzeń. Recenzent chciałby poznać opinie Autorki na temat lokalnych zakłóceń wyników transformacji falkowej – jak nabrać przekonania lub wręcz pewności, że obserwowane zjawisko jest zakłóceniem, a nie diagnozą np. drugorzędnegodefektulub defektu zlokalizowanego przy końcach konstrukcji?
Trzy z analizowanych przykładów dotyczą belki swobodnej, czwarty belki wolnopodpartej. Proszę o wyjaśnienie dlaczego w belce swobodnie podpartej symulowano tylko uszkodzenie pasa dolnego kształtownika stalowego?

Str. 117 – Autorka pisze, że „Na obecnym etapie podczas analiz pominięto wpływ temperatury”. Recenzent chciałby poznać opinie Autorki rozprawy jak mogłoby, jej zdaniem, wyglądać uwzględnienie wpływu temperatury – możliwości takiej nie podano we wnioskach końcowych.

Str. 119 – W Tablicy 6.2 w pierwszej kolumnie znajdują się współrzędne punktów pomiarowych, a nie, jak napisano, postaci drgań.

W podpisach rysunków 6.6, 6.11, 6.16, 6.18 powinno być „DWT” a nie „CWT” – rysunki 6.24 i 6.25 za to opisane są poprawnie.

Str. 131 – Rozdział 6.3 dotyczy belki wolnopodpartej, a nie swobodnej, jak napisano w tytule. W Rozdziale 7 zamieszczono uwagi końcowe i wskazano kierunki dalszych badań. Zdaniem recenzenta Autorka udowodniła postawione w punkcie 1.3 tezy:

- wykazała, że transformacja falkowa pozwala na precyzyjną lokalizację uszkodzenia stalowo-betonowych belek zespołowych,
- wykazała, że potrafia przeprowadzić złożony proces dostrajania modeli obliczeniowych,
- wykazała, że opracowany przez nią proces pozwala diagnozować i lokalizować defekty stalowo-betonowych belek zespołowych.

Kierunki dalszych badań wskazano może nieco na wyrost i zbyt ogólnie. Załączniki w postaci 26 tablic wyników, zawarte w Rozdziale 8 rozprawy, stanowią bardzo istotny element pracy, który świadczy o dokonaniach Autorki. Zdaniem recenzenta z korzyścią dla pracy byłoby włączenie tych tablic do wcześniejszych rozdziałów i bardziej dokładne omówienie otrzymanych przez Autorkę wyników.


Język i redakcja pracy

Praca zawiera niestety bardzo liczne błędy językowe, co utrudnia czytanie i niepotrzebnie obniża wartość rozprawy. Wymienimy jedynie kilka z nich z dwóch kolejnych stron rozprawy: Str. 17. „Koleją z prac wykorzystującą analizy falkowe w uszkodzeniach belek żelbetowych [140] oraz [49].” – brak orzeczenia w zdaniu.

Str. 17. „Diagnostykę uszkodzeń analizowano również w pracach [52]-[57] analizując stalowej belki czy kratownicy”, zamiast „analizując stalową belkę lub kratownicę”;

Str. 17. „Wyniki analiz dynamicznych elementów przedstawiono w kolejnych pracy”, zamiast „kolejnej pracy”;

Str. 18. „jak wykonali autorzy”, zamiast „jak wykazali autorzy”;
Str. 18. „Metody analizy modalnej polega na“, zamiast „polecają na“;
Str. 18. „Dla giętnych postaci drgań analizy MAC można znaleźć m.in. [8],...“ – brakuje „w pracach“.
Tego typu błędy występują w rozprawie kilkakrotnie razy.

W całej pracy autorka używa określenia „rysunek przedstawia“. Jest to określenie błędne – powinno być „na rysunku przedstawiono“.
Autorka nadużywa w pracy określenia „autorski“, używając kilkakrotnie razy.
Dlaczego niekiedy Autorka powołuje się na „prace naukowe“, choć najczęściej na prace bez określenia „naukowe“? Czyżby nie były one naukowe?

Wniosek końcowy
Pomimo przedstawionych powyżej uwag krytycznych należy stwierdzić, że Autorka recenzowanej rozprawy doktorskiej przeprowadziła badania na wysokim poziomie. Wymagały one szerokiej wiedzy, a także umiejętności pisania własnych programów komputerowych, z właściwym wykorzystaniem programów komercyjnych. Autorka udowodniła tezy postawione na początku pracy.
Recenzowana rozprawa doktorska spełnia wymagania Ustawy z dnia 14 marca 2003 roku o stopniach i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dziennik ustaw nr. 65, poz. 598) i dlatego stawiam wniosek o dopuszczenie pracy mgr inż. Agnieszki Pełka-Sawenko do publicznej obrony.

W. Główka

8